7 Completely reducible modules

Suppose that M is an R-module. We say that M is **decomposable** when $M = K \oplus L$, where K and L are nonzero. (In particular, decomposable modules are nonzero.) We say that M is **indecomposable** when it is nonzero but not decomposable. We say that M is **simple** — or **irreducible** — when it has exactly two submodules, namely 0 and M. (In particular, simple modules are nonzero.) We say that M has **finite length** when it contains a finite filtration

$$M = M_0 > M_1 > \cdots > M_n = 0$$

with simple factors M_j/M_{j+1}. Such a filtration is called a **composition series**, and the factors are called the **composition factors**. The famous Jordan-Hölder Theorem (which we will not use) states that any two composition series in a given module M have the same length and the same factors, but in possibly different orders. Although we will not prove the Jordan-Hölder Theorem we will sketch a couple of the important steps.

Lemma 7.1 (Dedekind’s Modular Law). Suppose that A, B, and C are R-modules. If one of the three is contained in one of the other two then

$$(A + B) \cap C = A \cap C + B \cap C.$$

Proof. If either $A > C$ or $B > C$ then both sides of this equation equal C. The interesting case is where (say) $C > A$. In this case . . .

Lemma 7.2 (Schreier-Zassenhaus Refinement Theorem). Any two finite filtrations of a module M have equal-length refinements with the same nonzero factors (counting multiplicity, but possibly in different orders).

Proof. Suppose

$$M = K_0 > \cdots > K_m = 0$$

and

$$M = L_0 > \cdots > L_n = 0$$

are two refinements of M. For each $i \in [0, m]$ and $j \in [0, n]$ define

$$K_{i,j} = K_i + K_{i-1} \cap L_j$$

and

$$L_{j,i} = L_j + L_{j-1} \cap K_i.$$
By Noether’s isomorphism and the Modular Law we see that

\[
\frac{K_{i,j}}{K_{i,j+1}} = \frac{K_{i+1} + K_i \cap L_j}{K_{i+1} + K_i \cap L_{j+1}} \\
\cong \frac{K_i \cap L_j}{K_i \cap L_j \cap (K_{i+1} + K_i \cap L_{j+1})} \\
= \frac{K_{i+1} \cap L_j + K_i \cap L_{j+1}}{K_i \cap L_j} \\
\cong \frac{L_{j,i}}{L_{j,i+1}}.
\]

Notice that if \(K \) is a field and \(R \) is a \(K \)-algebra then any \(R \)-module which is finite-dimensional over \(K \) has a composition series. A module has a composition series precisely when it is both noetherian and artinian.

Lemma 7.3. If \(I \) is a minimal left ideal in \(R \) then either \(I^2 = 0 \) or else \(I = Re \) for some idempotent \(e \).

Proof. Suppose \(Ia \neq 0 \) for some \(a \in I \). Minimality implies that \(Ia = I \). Choose \(e \in I \) such that \(ea = a \). Let \(J = \{ b \in I \mid ba = 0 \} \). By minimality again, \(J = 0 \). Since \((e^2 - e)a = e^2a - ea = ea - ea = 0\) we conclude that \(e^2 = e \). Since \(0 \neq 1e < I \) we must also have that \(I = Ie \).

Lemma 7.4. If \(I \) is a left ideal in \(R \) then \(I \) is a direct summand if and only if \(I = Re \) for some idempotent \(e \). In this case, we also have that \(I = Ie \), and that \(I \) is a ring with identity \(e \).

Proof. Suppose that \(I = Re \) where \(e^2 = e \). Set \(f = 1 - e \) and \(J = Rf \). Note that \(fe = ef = e - e^2 = 0 \). If \(x \in R \) then \(x = x \cdot 1 = xe + xf \in I + J \). If \(xe = yf \) then \(xe = xe^2 = yfe = 0 \). Hence \(R = I \oplus J \).

Conversely, suppose that \(R = I \oplus J \). Say \(1 = e + f \), where \(e \in I \) and \(f \in J \). If \(x \in R \) then \(x = xe + xf \). Since \(R = I \oplus J \), \(xe \in I \), and \(xf \in J \), we conclude that if \(x \in I \) then \(xe = x \). In particular, \(e^2 = e \) and \(I = Ie \). Finally, \(Re < I = Ie < Re \), whence \(I = Re \).

A module is **completely reducible** if every submodule is a direct summand.

Theorem 7.5. Suppose that \(M \) is an nonzero \(R \)-module. The following are equivalent.

1. \(M \) is a sum of simple modules.
2. \(M \) is a direct sum of simple modules.
3. \(M \) is completely reducible.

We prove this using a couple of lemmas.
Lemma 7.6. Suppose that \(A \) is completely reducible. If \(B \) is a submodule then both \(B \) and \(A/B \) are completely reducible.

Proof. If \(C < B \) then \(A = C \oplus D \) for some \(D \). Let \(E = D \cap B \). We have that \(C \cap E < C \cap D = 0 \) and
\[
C + E = C \cap B + D \cap B = (C + D) \cap B = A \cap B = B,
\]
by the Modular Law. Hence \(B = C \oplus E \).

Now if \(A = B \oplus F \) then \(F \cong A/B \), and \(F \) is completely reducible. \(\square \)

Lemma 7.7. Suppose that the \(R \)-module \(A \) is generated by a family of simple submodules. Say
\[
A = \sum_{i \in I} B_i,
\]
where each \(B_i \) is simple. If \(C < A \) then there is a \(J \subset I \) such that
\[
A = C \oplus \bigoplus_{j \in J} B_j.
\]

In particular (taking \(C = 0 \)) we conclude that \(A \) is the direct sum of some subfamily of the \(B_i \).

Proof of theorem 7.5. 1 \(\implies \) 2: This follows from lemma above, taking \(C = 0 \).

2 \(\implies \) 3: If \(C < M \) then the lemma above implies that \(C \) is a direct summand.

3 \(\implies \) 1: Let \(S \) be the sum of all the simple modules in \(M \). Suppose that \(S \neq M \): we seek a contradiction. Let \(0 \neq x \in M \). Choose \(N \) be maximal with respect to the following two properties:

1. \(x \notin N \).
2. \(N > S \).

(This is a straightforward application of Zorn’s Lemma.) Thus, \(N \) is a maximal submodule of \(Rx + N \), and \((Rx + N)/N \) is simple. Since \(M \) is completely reducible, so is \(Rx + N \). Thus, \(Rx + N = K \oplus N \), where \(K \) is simple. This contradicts the choices above. Hence \(S = M \), as claimed. \(\square \)