Colon ideals and primary decomposition

December 18, 2009

Let \(R \) be a (unitary!) commutative ring. If \(I \) and \(J \) are ideals in \(R \) we let

\[
[I : J] = \{ x \in R \mid xJ \subset I \}.
\]

(1)

So, \([I : J]\) is the largest ideal \(K \) such that \(JK \subset I \). Better notation might be \(I/J \), but that notation is already taken.

It is straightforward to check that \([I : J]\) is an ideal. Note that \(I \subset [I : J] \).

So, if \(F \) is a field and \(R = F[x_1, \ldots, x_n] \) then \(\mathbb{Z}([I : J]) \subset \mathbb{Z}(I) \). Moreover, \(\mathbb{Z}(I) - \mathbb{Z}(J) \subset \mathbb{Z}([I : J]) \). Indeed, let \(p \in \mathbb{Z}(I) - \mathbb{Z}(J) \). Choose \(f \in J \) such that \(f(p) \neq 0 \). If \(g \in [I : J] \) then \(fg \in I \), whence \(f(p)g(p) = 0 \). We conclude that \(g(p) = 0 \). In fact, if \(F \) is algebraically closed then \(\mathbb{Z}([I : J]) \) is the closure of \(\mathbb{Z}(I) - \mathbb{Z}(J) \). (See exercise 54 in section 15.2.)

If \(a \in R \) we write \([I : a]\) for \([I : aR]\).

Note that \(\bigcap_i I_i : J = \bigcap_i [I_i : J] \). Indeed, \(xJ \subset \bigcap_i I_i \) if and only if \(xJ \subset I_i \) for all \(i \).

Suppose that \(R \) is noetherian. To establish that every ideal in \(R \) has a minimal (or irredundant) primary decomposition we use the acc to first prove that every ideal has a decomposition into irreducibles, and then we use colon ideals to prove that an irreducible ideal is primary. We have already proven that for any prime \(P \) and any finite collection \(Q_1, \ldots, Q_n \) of \(P \)-primary ideals we have that \(\bigcap_i Q_i \) is also \(P \)-primary. So, we obtain a minimal primary decomposition from a decomposition into irreducibles by first replacing all of the irreducibles with the same radical by their intersection, and then eliminating any redundant terms remaining.

We now prove that if \(R \) is noetherian and \(Q \) is irreducible then \(Q \) is primary. Suppose that \(ab \in Q \) but \(b \notin Q \). We wish to show that some \(a^n \in Q \). Now \(b \in [Q : a] \), so it is natural to consider the chain

\[
[Q : a] \subset [Q : a^2] \subset [Q : a^3] \subset \cdots
\]

Since \(R \) is noetherian this chain terminates. Say \([Q : a^n] = [Q : a^{n+1}] \). We claim that for this \(n \), \((a^nR + Q) \cap (bR + Q) = Q \). Since \(Q \) is irreducible and \(b \notin Q \) this yields \(a^n \in Q \). Now suppose \(y \) is in this intersection; write \(y = a^nz + q \) with \(q \in Q \). Thus, \(ay \in Q \), whence \(a^{n+1}z \in Q \). Since \([Q : a^{n+1}] = [Q : a^n] \) we find that \(a^{n+1}z \in Q \), whence \(y \in Q \), as claimed.
Thus we have shown that every ideal \(I \) is the intersection of a collection of primary ideals \(Q_1, \ldots, Q_n \), and we can assume moreover that this collection is minimal (or irredundant), in the following sense:

- For all \(i, Q_i \not\supset \bigcap_{j \neq i} Q_j \).
- If \(i \neq j \) then \(\text{rad} Q_i \neq \text{rad} Q_j \).

The primes \(\text{rad} Q_i \) are called the associated primes for \(I \). Altho in general the \(Q_i \) are not uniquely determined, the associated primes are. We prove this using colon ideals.

In fact, the associated primes can be characterized as those colon ideals \([I : a]\) which happen to be prime.

We first establish several useful facts.

1. \([I : J] = R\) if and only if \(J \subset I \). Indeed, if \([I : J] = R\) then \(J = JR = J[I : J] \subset I \).

2. If \(P \) is prime and \(J \not\subset P \) then \([P : J] = P \). Indeed, \(J[P : J] \subset P \).

3. If \(Q \) is \(P \)-primary and \(J \not\subset Q \) then \([Q : J] \) is \(P \)-primary. Indeed, suppose that \(xyJ \subset Q \) but \(xJ \not\subset Q \). Since \(Q \) is \(P \)-primary we conclude that \(y \in P \subset \text{rad}[Q : J] \). Note: if \(y^nJ \subset Q \) and \(J \not\subset Q \) then \(y^{mn} \in Q \), for some \(m \). That is if \(Q \) is primary then \(\text{rad} Q \) is either \(\text{rad}[Q : J] \) or \(R \).

Now let \(I = Q_1 \cap \cdots \cap Q_n \) be a minimal primary decomposition of \(I \), with associated primes \(P_i = \text{rad} Q_i \). If \(a \in R - I \) then

\[[I : a] = \bigcap_i [Q_i : a], \quad \text{rad}[I : a] = \bigcap_i \text{rad}[Q_i : a], \]

and \(\text{rad}[Q_i : a] = R \) or \(P_i \), depending on whether or not \(a \in Q_i \). Since primes are radical and irreducible we conclude that if \([I : a]\) is prime then \([I : a]\) is exactly one of the \(P_i \). Conversely, if we choose \(a \in \bigcap_{j \neq i} Q_j - Q_i \) then \(\text{rad}[I : a] = P_i \), whence \([I : a] = P_i \).

After we learn a bit more about localization we will also show that the primary components whose associated primes are isolated — that is, not containing any other associated primes — are uniquely determined.

We finish by observing the following corollary: if \(P_1, \ldots, P_n \) are the associated primes of 0 then \(\bigcup_i P_i \) is the set of zero-divisors of \(R \). Indeed, the set of zero divisors equals

\[\bigcup_{a \neq 0} [0 : a] = \bigcup_{a \neq 0} \text{rad}[0 : a] = \bigcup_i P_i. \]