Math 1860-021, Summer 2014

Quiz 1

1. Find the volume of the solid obtained by revolving about the y-axis the region bounded by the curve $x = \sqrt{y}/(y^2 + 1)$ and the lines x = 0 and y = 1.

2. Find the volume of the solid obtained by revolving about the x-axis the region bounded by the curve $y = \sqrt{x}$ and the lines x = -y and y = 2.

1. Find the volume of the solid obtained by revolving about the x-axis the region bounded by the curves $y = x^2 + 1$ and y = x + 3.

2. Find the length of the curve $y = x^{3/2}$ between x = 0 and x = 4.

Quiz 3

1. Evaluate
$$\int_{1}^{e} x^{3} \ln(x) dx$$
.
2. Evaluate $\int_{0}^{\pi/2} \cos^{5}(x) dx$.

Quiz 4

1. Evaluate
$$\int_{0}^{1/2} \frac{dx}{(1+4x^2)^{3/2}} dx$$

2. Evaluate
$$\int_{3} \frac{(x+1)\,dx}{x^2-4}$$

- 1. Evaluate the improper integral $\int_2^\infty \frac{2 \, dx}{x^2 + 4}$, or else determine that it does not converge.
- 2. Evaluate the improper integral $\int_{-1}^{1} \frac{dx}{x^2}$, or else determine that it does not converge.

Quiz 6

- 1. Find the limit of the sequence $a_n = 1 + (-1)^n$ or else determine that it does not converge.
- 2. Find the sum of the series $2 + \frac{2}{5} + \frac{2}{25} + \dots + \frac{2}{5^n} + \dots$ or else determine that it does not converge.

Quiz 7

1. Find the interval of convergence of the series $\sum_{n=0}^{\infty} \frac{(x+1)^n}{3^n}$.

2. Find sum of the series
$$\sum_{n=0}^{\infty} \frac{(x+1)^n}{3^n}$$
 as a function of x .

Quiz 8

- 1. Find the Maclaurin series of $e^{-x/2}$.
- 2. Find the Maclaurin series of $\frac{2+x}{1-x}$.

Quiz 9

1. What is the Maclaurin series of $\frac{x}{\sqrt[3]{1+2x}}$?

2. What is the radius of convergence of the series in problem 1?

Quiz 10

1. What is the behavior of the series $\sum_{n=2}^{\infty} \frac{1}{n(\ln(n))^2}$? 2. What is the behavior of the series $\sum_{n=2}^{\infty} \frac{(n!)^2}{(2n)!}$?

1. What is the behavior of the series
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{2n+3}}?$$

2. What is the behavior of the series
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}n^3}{2^n}r^3$$

Quiz 12

- 1. Find the Maclaurin series for $-\frac{1}{2}\ln(1-2x)$.
- 2. What is the interval of convergence for the series in problem 1?

Quiz 13

- 1. Find the equation of the tangent line to the parametric curve $x = t^3 2t + 5$, $y = t^2 + t 1$ when t = 0.
- 2. For the curve above find d^2y/dx^2 when t = 0.
- 3. Extra credit: find the area enclosed in the loop.

Match the polar graphs below to the following equations. Justify your answers!

Quiz 15

- 1. Find the area inside one loop of the polar graph $r = 2\sin(3\theta)$.
- 2. What is the distance between (1, -1, 3) and (2, 2, 5)?

Quiz 16

- 1. Let $\mathbf{u} = \langle 6, -3, 2 \rangle$ and $\mathbf{v} = \langle 2, 2, -1 \rangle$. Find $\cos \theta$, where θ is the angle between \mathbf{u} and \mathbf{v} .
- 2. Let ${\bf v}$ and ${\bf u}$ be as above. Compute $\operatorname{proj}_{{\bf u}} {\bf v}.$